Special issue: Computational intelligence models for image processing and information reasoning
نویسندگان
چکیده
Computational Intelligence (CI) models comprise robust computing methodologies with a high level of machine learning quotient. CI models, in general, are useful for designing computerized intelligent systems/machines that possess useful characteristics mimicking human behaviors and capabilities in solving complex tasks, e.g., learning, adaptation, and evolution. Examples of some popular CI models include fuzzy systems, artificial neural networks, evolutionary algorithms, multi-agent systems, decision trees, rough set theory, knowledge-based systems, and hybrid of these models. This special issue highlights how different computational intelligence models, coupled with other complementary techniques, can be used to handle problems encountered in image processing and information reasoning.
منابع مشابه
Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملThe Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection
The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...
متن کاملSpecial Issue on Computational Intelligence in Data mining
When we attempt to solve real-world problems, like extracting knowledge from large amount of data, we realize that they are typically ill-defined systems, difficult to model and with large-scale solution spaces. In these cases, precise models are impractical, too expensive, or non-existent. Furthermore, the relevant available information is usually in the form of empirical prior knowledge and i...
متن کاملHybrid and Ensemble Methods in Machine Learning J.UCS Special Issue
Hybrid and ensemble methods in machine learning have attracted a great attention of the scientific community over the last years [Zhou, 12]. Multiple, ensemble learning models have been theoretically and empirically shown to provide significantly better performance than single weak learners, especially while dealing with high dimensional, complex regression and classification problems [Brazdil,...
متن کاملEditorial: Artificial Neural Networks as Models of Neural Information Processing
In artificial intelligence (AI), new advances make it possible that artificial neural networks (ANNs) learn to solve complex problems in a reasonable amount of time (LeCun et al., 2015). To the computational neuroscientist, ANNs are theoretical vehicles that aid in the understanding of neural information processing (van Gerven). These networks can take the form of the rate-based models that are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Fuzzy Systems
دوره 24 شماره
صفحات -
تاریخ انتشار 2013